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Abstract1

We present computational advances and results in the implementation of an entropy-based2

moment closure, MN , in the context of linear kinetic equations, with an emphasis on heteroge-3

neous and large-scale computing platforms. Entropy-based closures are known in several cases4

to yield more accurate results than closures based on standard spectral approximations, such as5

PN , but the computational cost is generally much higher and often prohibitive. Several opti-6

mizations are introduced to improve the performance of entropy-based algorithms over previous7

implementations. These optimizations include the use of GPU acceleration and the exploitation8

of the mathematical properties of spherical harmonics, which are used as test functions in the9

moment formulation. To test the emerging high-performance computing paradigm of communi-10

cation bound simulations, we present timing results at the largest computational scales currently11

available. These results show, in particular, load balancing issues in scaling the MN algorithm12

that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio13

in time to solution of MN to PN decreases.14

1 Introduction15

Kinetic equations, such as the Boltzmann equation and the radiation transport equation, are16

integro-differential equations with up to seven independent variables: three space, three momen-17

tum, and time. Moment methods track the evolution of only a finite number of weighted momentum18

averages, or moments, of the kinetic distribution, thus reducing the dimensionality of the problem.19

However, this reduction requires a closure that approximates in some way the kinetic information20

that is lost in the averaging process. Thus, various methods will differ by the closure used in their21

formulation.22

In the context of radiation transport, the classical moment method is the spherical harmonic23

expansion, colloquially termed PN in the radiation transport community [11, 32, 40]. This method24

uses a simple truncation closure that results in a linear hyperbolic balance law. However, the method25

may suffer from numerical artifacts, most notably large oscillations that can result in negative26
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particle concentrations, especially in the streaming particle regime, where collisions are rare [7].27

An alternative to the PN closure is a more complicated nonlinear closure based on minimizing a28

physically relevant, convex function related to the entropy of the physical system [13, 20, 31]. The29

resulting method, colloquially termed MN in the radiation transport community, yields a nonlinear30

hyperbolic balance law that, unlike the PN method, formally captures the correct streaming limit31

[13], but at the same time, is accurate in scattering dominated regimes [9, 17]. The MN method32

has been shown to be more accurate in several test cases [8, 14, 16, 20] and in several different33

applications [6, 15, 18, 33, 36, 45]. However, it requires the solution of a minimization problem at34

every spatial cell of the discretized domain. In general, the minimization must be solved numerically.35

This causes the MN method to require many more floating point operations than the PN method,36

even though the methods have the same data communication patterns. To avoid the computational37

overhead of the minimization problem, some approaches generate approximations of the entropy-38

based closure using look-up tables or interpolation schemes [34, 35, 47]. Such approximations are39

generally less robust than the original entropy-based closures and have, so far, been limited to40

low-order moment systems. Even so, in some cases, they maintain enough of the structure from41

the entropy-based approach to be considered as a suitable alternative.42

The computational expense of the MN method makes it prohibitive for serial or even small-scale43

parallel implementations. However, for large scale computations on high performance machines,44

it is expected that the computing time for the PN method will eventually become dominated by45

communication, and in such cases, the MN method will be more competitive in time to solution.46

Therefore progress in this area depends on three factors: (i) algorithmic improvements in solving the47

minimization problem that defines the MN closure, (ii) performance improvements that leverage48

the available computer hardware, and (iii) scaling to extremely large problems. The work here49

builds on algorithmic improvements in [2, 3].1 In the current paper, we address the other two50

factors. First we design and test several optimizations for the MN algorithm that reduce the time51

to solution by as much as 10 times in some cases. We then explore scalability of the MN algorithm52

using an explicit time integration algorithm. Using the supercomputer Titan, which is housed at53

Oak Ridge National Laboratory and operated by the Oak Ridge Leadership Computing Facility,54

we find the MN algorithm weakly scales almost perfectly out to 17,576 compute nodes while the55

PN algorithm displays an increase in time per node by a factor of 1.2x to 4x, depending on the56

amount of data per node. However, even with performance improvements, the time to solution57

of the MN algorithm is still approximately 25 times greater than the time to solution of the PN58

algorithm when both are run at full scale.59

The layout of the paper is as follows. In Section 2, we briefly summarize the moment approach,60

discuss important implementation details, and introduce two test problems that will be used for61

numerical simulations. In Section 3, we introduce three improvements to the MN algorithm: one62

that leverages structure in the Hessian matrix of the MN minimization algorithm and two that use63

GPUs to accelerate the two most arithmetically intensive parts of the computation. In Section 4,64

MN statistics and timing results are presented for the two test problems. Results of weak scaling65

tests for PN and MN are also compared. Section 5 is for conclusions and discussion. The Appendix66

contains useful technical details about spherical harmonics and Gaunt coefficients. Section D of67

the Appendix contains a glossary for the variables used throughout the paper.68

1Although not discussed here, other efforts to solve the minimization problem have been documented in [3].
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2 Moment equations69

In this section, we briefly summarize the necessary background material on moment methods,70

give details on numerical implementation, and present two initial conditions used in the numerical71

examples.72

2.1 Formulation73

The governing equation for this study is a linear kinetic transport equation for unit speed particles74

in an infinite medium. This equation takes the form75

∂tf + Ω · ∇xf =
1

4π
σs〈f〉 − σtf, (1)

where (i) x ∈ R3 is a point in space, (ii) Ω ∈ S2 (the unit sphere) is a velocity direction (velocity76

magnitude is 1), (iii) t > 0 is a point in time, (iv) f(x,Ω, t) is the kinetic density of particles with77

respect to the measure dxdΩ, (v) σs(x) is the scattering cross section, (vi) σt(x) is the total cross78

section, and (vii) 〈·〉 =
∫
S2 · dΩ. In general σt ≥ σs ≥ 0; for the purposes of this paper, we set79

σt = σs = 1.80

Moment equations are derived from (1). Let m(Ω) = (m1(Ω), . . . ,mM (Ω))T be a finite vector81

of real-valued, normalized spherical harmonics2 (defined in Appendix A) of degree less than or82

equal to N with length M = (N + 1)2. Define the finite vector of moments with respect to Ω as83

uf (x, t) = 〈mf〉. Then according to (1), uf satisfies84

∂tuf +∇x · 〈Ωmf〉 = −Quf , (2)

where Q = diag(0, 1, . . . , 1). The system (2) is not closed because the flux 〈Ωmf〉 is a linear85

combination of moments up to degree N+1 whereas uf only contains moments up to and including86

degree N .87

The system (2) is closed using an expansion operator88

E : D 3 v 7−→ E(v) ∈ L1(S2), (3)

where D ⊂ RM , and E satisfies the compatibility condition v = 〈mE(v)〉.3 Approximating f by89

E(u) in (2) yields the closed system90

∂tu +∇x · 〈ΩmE(u)〉 = −Qu, (4)

where u approximates the true moments uf . Equation (4) may be equivalently viewed as the91

following nonlinear Galerkin approximation: Find u ∈ D such that92

∂t〈φE(u)〉+∇x · 〈ΩφE(u)〉 = −Q〈φE(u)〉, (5)

for all φ ∈ span{m1, . . . ,mM}.93

In this paper, we focus on the entropy-based moment method MN , but for the purposes of94

comparison, we also consider the classical moment method PN . Below are their expansion operators95

[16]:96

2The choice of spherical harmonics is not necessary, but it is common in radiation transport. This is because they
are eigenfunctions of a more general scattering operator [32].

3For the PN equations, the domain D of the expansion operator E is all of RM . For the MN equations D =
{w ∈ RM : w = 〈mF 〉 for some nonnegative F ∈ L1(S2)} is the set of realizable moments. More information on
realizability in the context of kinetic equations can be found in [21,23,43]. For more general theory, see [10,24,44].

3



• PN : E(u) = uT 〈mmT 〉−1m = uTm;497

• MN : E(u) = exp(α̂(u)Tm), where α̂ : RM → RM is given by98

α̂ = arg min
α∈RM

〈
exp(αTm)

〉
−αTu. (6)

99

2.2 Implementation100

In this section, we present an overview of several implementation details including (i) quadrature101

approximation in angle, (ii) finite volume discretization in space, (iii) solving the MN minimization102

problem (6), and (iv) time discretization method. Since many indices and variables are used, a103

glossary is available in Appendix D for reference.104

Quadrature approximation. For various parts of the MN implementation, we use a quadra-105

ture to approximate integrals with respect to Ω over the domain S2. To this end, we use a prod-106

uct quadrature on the sphere [4, 46] with ng Gauss-Legendre nodes/weights on the Ω3-axis and107

2ng equally spaced nodes/weights around latitudinal circles of the sphere for a total of Q = 2n2
g108

quadrature nodes/weights. This quadrature has the property that it integrates spherical harmon-109

ics of degree less than or equal to 2ng − 1 exactly. We use the notation (Ωq, wq) to represent the110

quadrature nodes and weights, respectively, for q = 1, . . . , Q. For any G ∈ L1(S2), integrals will be111

approximated as112 ∫
S2
G(Ω)dΩ ≈

Q∑
q=1

wqG(Ωq). (7)

Several other quadratures exist that can integrate spherical harmonics of the same degree as the113

cross-product quadrature, but with fewer points. These include quadratures by Lebedev [26–30]114

and by Ahrens and Beylkin [1]. As the number of quadrature points increases, these quadratures115

are optimal in the number of nodes/weights and asymptotically use 2/3 the number of points that116

the product quadrature uses. See [5] for a general discussion. While we use the product quadrature117

for simplicity, these more efficient quadratures will likely yield a commensurate improvement in118

overall run-time of the MN simulations.119

Spatial discretization. For the spatial discretization, we use a finite volume method. In partic-120

ular, we use a kinetic scheme [12,19,38,39]. This scheme is derived by first spatially discretizing the121

kinetic equation (1) using a finite volume approach and then taking moments of the discretization122

and applying the closure.123

More specifically, we use a uniform cartesian grid with cells Cijk and cell sizes ∆x×∆y ×∆z.
For compactness, define

δijk :=
1

∆x

〈
Ω1m(Ei+1/2,j,k − Ei−1/2,j,k)

〉
+

1

∆y

〈
Ω2m(Ei,j+1/2,k − Ei,j−1/2,k)

〉
+

1

∆z

〈
Ω3m(Ei,j,k+1/2 − Ei,j,k−1/2)

〉
, (8)

4In general, the matrix 〈mmT 〉 is diagonal since the real-valued spherical harmonics are an orthogonal basis.
Furthermore, by normalizing the spherical harmonics as we do in this paper, 〈mmT 〉 is the identity matrix.

4



where Ei±1/2,j,k approximate the average of E(u) on the two boundary faces of Cijk perpendicular124

to the x-axis, and Ei,j±1/2,k and Ei,j,k±1/2 are defined similarly. Then, the spatial discretization is125

given by126

∂tuijk + δijk +Quijk = 0, (9)

where uijk is an approximation of the corresponding cell average for u.127

We use a second-order upwind scheme to calculate edge values for both PN and MN . For the PN128

closure, the integrals in (8) can be computed exactly without explicitly calculating the edge values129

Ei±1/2,j,k, Ei,j±1/2,k, and Ei,j,k±1/2. However, for the MN closure, a quadrature rule is required to130

approximate the integrals. In addition, a double minmod limiter is used to limit slopes for MN to131

ensure realizable moments as in [2,16]. More details about the discretization for both PN and MN132

can be found in [16], where the same discretization approach was used in a two-dimensional spatial133

setting. (Note that we abuse the notation Ei±1/2,j,k, Ei,j±1/2,k, Ei,j,k±1/2, and δijk, which may refer134

to values for either PN or MN , although the two methods yield different results.)135

Minimization problem for MN . Given u, the objective function for the minimization problem136

(6) is137

Φ(α; u) =

∫
S2

exp(αTm)dΩ−αTu. (10)

We use the Newton-type solver developed in [2], which requires the gradient and Hessian of Φ:138

g(α) = 〈meα
Tm〉 − u and H(α) = 〈mmT eα

Tm〉. (11)

A summary of the minimization algorithm is given in Algorithm 1. For full details consult [2]5.139

Algorithm 1: Newton type optimization algorithm

Input: u, initial guess α(0)

Parameters: tolerance τ > 0 , line search parameter 0 < ε < 1, maxiter
1 α← α(0)

2 iter← 0
3 while iter < maxiter do
4 iter← iter + 1
5 compute the gradient g(α) and Hessian H(α)
6 if ||g(α)|| < τ then
7 return α
8 end
9 solve for the search direction d← −H−1(α)g(α)

10 do a linesearch to find t ∈ (0, 1] so that Φ(α + td) ≤ Φ(α) + εtgTd
11 α← α + td

12 end
13 return α

Since H is symmetric and positive definite, d is computed using a Cholesky decomposition. In140

the linesearch, we use ε = 10−3, τ = 10−4, and maxiter = 100. In our simulations, iter never141

reached the limit maxiter. Typically, iter took on values of only 1 or 2, but a few minimizations142

required values as high as 25.143

5The algorithm in [2] uses an adaptive quadrature and a regularization procedure for ill-conditioned problems.
Neither of these were required for the problems in this paper.
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One important implementation detail is the calculation of the objective Φ and the gradient144

g, both of which can be computed from the Hessian. Given the value of the Hessian H, the145

computation of Φ and g are trivially computed since m1 is a constant and thus146

Φ =
1

m2
1

H1,1 −αTu and g =
1

m1
H:,1 − u, (12)

where H:,1 indicates the first column of H and H1,1 is the (1, 1) entry of H. Hence, calculation of147

the Hessian is the largest computational cost of the minimization algorithm.148

Time discretization. We use the explicit Heun’s method (SSP-RK2) for time integration which149

is 2nd order, and under the time step constraint150

∆t ≤ 1

2( 1
∆x + 1

∆y + 1
∆z ) + σt

, (13)

ensures realizability for the MN closure [2]6.151

Algorithms 2 and 3 outline the approach used to calculate one time step for the MN and PN152

algorithms, respectively. The code uses one MPI task per compute node, with OpenMP or CUDA153

used to parallelize computations on each compute node. The four functions from lines 3 – 6 do the154

following155

• comm – communicates boundary data between compute nodes via MPI;156

• min – implements Algorithm 1 (MN only);157

• flux pn/flux mn – calculates δ from (8) for PN and MN , respectively;158

• euler – computes u(s) = u(s−1)−∆tδ−∆tQu(s−1), where s is the Runge-Kutta stage of the159

Heun method.160

Algorithm 2: One time step for the
MN algorithm

Input: moment at time n: un

1 u(0) ← un

2 for s = 1 . . . 2 do

3 comm(u(s−1))

4 α← min(u(s−1))

5 δ ← flux mn(α,u(s−1))

6 u(s) ← euler(δ,u(s−1))

7 end

8 un+1 ← 1
2(un + u(2))

9 return un+1

Algorithm 3: One time step for the
PN algorithm

Input: moment at time n: un

1 u(0) ← un

2 for s = 1 . . . 2 do

3 comm(u(s−1))
4

5 δ ← flux pn(α,u(s−1))

6 u(s) ← euler(δ,u(s−1))

7 end

8 un+1 ← 1
2(un + u(2))

9 return un+1

161

6This is only proven for 1D in space in the reference, but the extension to higher dimensions is straightforward.
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2.3 Test problems162

Two initial conditions were used for the tests we performed: a “smooth” initial condition163

uS
` =


2
√
π(2 + cos(2πx) cos(2πy) cos(2πz)), ` = 1

0.3 u1, ` = 2, 3, 4
0, ` > 4

(14)

and a narrow “Gaussian” initial condition:164

uG
` =

 2
√
πmax

{(
1

σ
√

2π

)3
exp

(
−||x||22

2σ2

)
, 10−8

}
, ` = 1

0, ` > 1
(15)

on a periodic domain of size [−1, 1]3 with σ = 0.03 for the Gaussian initial condition. Figure 1165

shows 〈f〉 in the z = 0 plane for the two initial conditions.166
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Figure 1: Left: smooth initial condition (14). Right: Gaussian initial condition (15). Figure shows
〈f〉 in the z = 0 plane.

3 Computational improvements for MN167

In this section, three computational optimizations for the MN method will be detailed with results168

showing the efficacy for each. The results were computed using one node of the supercomputer169

Titan. Each node consists of a 16-core 2.2GHz AMD Opteron 6274 processor and an NVIDIA Tesla170

K20 GPU.171

Before discussing the computational optimizations, it is necessary to know which functions172

comprise the bulk of the computation time. Table 1 contains timings for each of the four functions173

in Algorithm 2 executed on one compute node. From the table, it is clear that the bulk of the174

computing time is taken by the functions min and flux mn. We also present a profile of the PN175

method for comparison in Table 2. It is worth noting that the comm and euler functions have almost176

identical execution times when comparing PN to MN . This is expected since these functions are177

identical in both cases.178
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Function Time % Time

comm 0.139s 0.11%
min 99.764s 80.00%
flux mn 24.683s 19.79%
euler 0.036s 0.03%

Sum 124.622s 99.94%

(a) M3 method with ng = 12. Total wall
clock time was 124.702s.

Function Time % Time

comm 0.435s 0.02%
min 2083.208s 87.71%
flux mn 290.745s 12.24%
euler 0.235s 0.01%

Sum 2374.623s 99.98%

(b) M7 method with ng = 20. Total wall
clock time was 2375.041s.

Table 1: Profile of OpenMP code for Algorithm 2 with no optimizations. Parameters: smooth
initial condition, 403 spatial cells, 20 time steps taken.

Function Time % Time

comm 0.133s 7.60%
flux pn 1.559s 89.03%
euler 0.028s 1.60%

Sum 1.720s 98.23%

(a) P3 method. Total wall clock time was
1.751s.

Function Time % Time

comm 0.428s 2.61%
flux pn 15.535s 94.60%
euler 0.225s 1.37%

Sum 16.188s 98.58%

(b) P7 method. Total wall clock time was
16.422s.

Table 2: Profile of OpenMP code for Algorithm 3. Parameters: smooth initial condition, 403 spatial
cells, 20 time steps taken.

Remark 1. For clarity in the remainder of the paper, we will use the term “optimization” to refer179

to computational optimizations and the term “minimization” to refer to the minimization from180

Equation (6).181

3.1 GPU acceleration of the flux calculation182

Before describing the algorithm for GPU acceleration of flux mn, we describe the CPU implemen-183

tation of both flux pn in Algorithm 4 and flux mn in Algorithm 5 for comparison. To leading184

order, for a single spatial cell, the calculation of δijk for PN takes 6M2 multiplications to compute185

and for MN takes 3QM multiplications to compute. Since Q >> M in general, the calculation for186

PN is much less costly than the calculation for MN .187
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Algorithm 4: CPU flux algorithm for PN
Input: uijk for all spatial indices i, j, k
Definition: Ω+

` = max(Ω`, 0), Ω−` = min(Ω`, 0)
1 for i = 1 . . . n, j = 1 . . . n, k = 1 . . . n (parallel via OpenMP) do
2 δijk ← 0
3 δijk ← δijk + 1

∆x〈Ω
+
1 mmT 〉(1

4ui+1,j,k + 3
4ui,j,k − 5

4ui−1,j,k + 1
4ui−2,j,k)

4 δijk ← δijk + 1
∆x〈Ω

−
1 mmT 〉(−1

4ui+2,j,k + 5
4ui+1,j,k − 3

4ui,j,k − 1
4ui−1,j,k)

5 δijk ← δijk + 1
∆y 〈Ω

+
2 mmT 〉(1

4ui,j+1,k + 3
4ui,j,k − 5

4ui,j−1,k + 1
4ui,j−2,k)

6 δijk ← δijk + 1
∆y 〈Ω

−
2 mmT 〉(−1

4ui,j+2,k + 5
4ui,j+1,k − 3

4ui,j,k − 1
4ui,j−1,k)

7 δijk ← δijk + 1
∆z 〈Ω

+
3 mmT 〉(1

4ui,j,k+1 + 3
4ui,j,k − 5

4ui,j,k−1 + 1
4ui,j,k−2)

8 δijk ← δijk + 1
∆z 〈Ω

−
3 mmT 〉(−1

4ui,j,k+2 + 5
4ui,j,k+1 − 3

4ui,j,k − 1
4ui,j,k−1)

9 end
10 return δijk for all spatial indices i, j, k

188

Algorithm 5: CPU flux algorithm for MN

Input: αijk for all spatial indices i, j, k
Definition: mq` = m`(Ωq)

1 for i = 1 . . . n, j = 1 . . . n, k = 1 . . . n (parallel via OpenMP) do
2 δijk ← 0
3 end
4 for q = 1 . . . Q (serial) do
5 for i = 1 . . . n, j = 1 . . . n, k = 1 . . . n (parallel via OpenMP) do

6 Eqijk ← exp(
∑M

`=1mq`α`ijk)
7 end
8 for i = 1 . . . n, j = 1 . . . n, k = 1 . . . n (parallel via OpenMP) do
9 compute Eq,i±1/2,j,k, Eq,i,j±1/2,k, and Eq,i,j,k±1/2

10 for ` = 1 . . .M do
11 δ`ijk ← δ`ijk + 1

∆xwqmq`(Eq,i+1/2,j,k − Eq,i−1/2,j,k)

12 δ`ijk ← δ`ijk + 1
∆ywqmq`(Eq,i,j+1/2,k − Eq,i,j−1/2,k)

13 δ`ijk ← δ`ijk + 1
∆zwqmq`(Eq,i,j,k+1/2 − Eq,i,j,k−1/2)

14 end

15 end

16 end
17 return δijk for all spatial indices i, j, k

189

Two important implementation notes are in order. First, the integrals 〈Ω±` mmT 〉 for ` =190

1, 2, 3 from Algorithm 4 can be precomputed once at the beginning of the program. Second, for191

Algorithm 5, the outer loop in quadrature index starting at line 4 is done serially to save space in192

memory. This enables the variable Eqijk to be held as only one floating point number per spatial193

cell instead of Q floating point numbers per spatial cell. For a moment method, only O(Mn3)194

bytes of memory should be required for the code, but if Eqijk required Q floating point numbers195

per spatial cell, the memory requirement would jump to O(Qn3) bytes. This is undesirable since196

Q is generally much larger than M . For our simulations, there was plenty of work to do in parallel197

for the loops in spatial cells i, j, k, that we still got near perfect speedup, and thus parallelization198

in q was not necessary.199
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GPU acceleration of flux mn is given in Algorithm 6. The bold GPU function in the algorithm200

refers to a function computed on the GPU. Hence in this implementation, the algorithm calls three201

separate GPU functions. (Data copies between CPU and GPU were negligible compared to the202

computation times on the GPU.)203

Algorithm 6: GPU flux algorithm for MN

Input: αijk for all spatial indices i, j, k
Definition: mq` = m`(Ωq)
Notes: Allocate all necessary memory on the GPU at the start of the program. Copy mq`

and wq from CPU to GPU at the start of the program.
1 Copy αijk for all i, j, k from CPU to GPU
2 Set δijk = 0 for all i, j, k on GPU
3 for q = 1 . . . Q (serial) do
4 GPU function in parallel across indices i, j, k do

5 compute Eqijk← exp(
∑M

`=1mq`α`ijk)
6 end
7 GPU function in parallel across indices i, j, k do
8 compute Eq,i±1/2,j,k, Eq,i,j±1/2,k, and Eq,i,j,k±1/2

9 end
10 GPU function in parallel across indices i, j, k, ` do
11 δ`ijk ← δ`ijk + 1

∆xwqmq`(Eq,i+1/2,j,k − Eq,i−1/2,j,k)

12 δ`ijk ← δ`ijk + 1
∆ywqmq`(Eq,i,j+1/2,k − Eq,i,j−1/2,k)

13 δ`ijk ← δ`ijk + 1
∆zwqmq`(Eq,i,j,k+1/2 − Eq,i,j,k−1/2)

14 end

15 end
16 Copy δijk for all i, j, k from GPU to CPU
17 return δijk for all spatial indices i, j, k

204

Acceleration results. As shown in Table 3, GPU acceleration of the flux calculation is signifi-205

cant. Results are given for the smooth initial condition with 403 spatial cells and 20 time steps. The206

times given only include time elapsed inside the flux mn function. The GPU acceleration ranges207

from 3x to almost 8x faster depending on the number of moments. The quadrature size does not208

seem to have much of an impact on the rate of GPU acceleration given our implementation.209

N ng OpenMP CUDA Speedup

3 12 24.537s 8.169s 3.00x
3 20 68.289s 22.109s 3.09x
9 20 438.341s 57.113s 7.67x
9 28 858.825s 110.182s 7.79x

Table 3: Timings for the function flux mn, using OpenMP vs CUDA.

3.2 Evaluating the Hessian using real Gaunt coefficients210

To make the Hessian evaluation more efficient, we have employed an optimization using real Gaunt211

coefficients [22]. In a one-dimensional spatial setting, m reduces to a basis of N + 1 Legendre212
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polynomials. It was shown in [25] that for this case, the Hessian can be iteratively constructed213

using only the first N moments by exploiting integration by parts. The same technique can be used214

in a Cartesian product of closed intervals (i.e. a closed rectangular prism) and a tensor product215

basis. However, when using spherical harmonics on the unit sphere, a similar scheme does not216

appear to be possible.217

The entries of the Hessian matrix H from Algorithm 1 are given by218

H`1`2 =

Q∑
q=1

m`1qm`2qTq, (16)

where m`q = m`(Ωq), mq = m(Ωq) = (m1q, . . . ,mMq), and Tq(α) = wq exp
(
αTmq

)
. For fixed α,219

Tq(α) needs to be computed only once. Hence, evaluation of all the entries in H(α) using (16)220

requires O(QM2) flops (see Table 4).221

The evaluation of H using Gaunt coefficients relies on the fact that the product of any two222

spherical harmonics is given by [22]223

m`1m`2 =
M̂∑
`3=1

β`1`2`3m̂`3 . (17)

Here β`1`2`3 are the real Gaunt coefficients, m̂ is a vector of real spherical harmonics of degree up224

to and including 2N , and M̂ = (2N + 1)2.7 Combining (16) and (17) gives225

H`1`2 =

M̂∑
`3=1

β`1`2`3

Q∑
q=1

m̂`3qTq. (18)

One can further optimize the calculation (18) using the fact that β is sparse. As shown in226

Appendix C, for `1, `2 fixed, β`1`2`3 has at most
√
M̂ = 2N + 1 nonzeros. To store β sparsely, we227

treat β as a matrix with the indices `1, `2 giving the row index and `3 giving the column index. Then228

we store β in the commonly used “compressed sparse row” (CSR) format for sparse matrices [42, p.229

90].230

Table 4 gives the floating point operation counts for computing the Hessian using (16) and using231

(18) with both full and sparse formats. For the cross-product quadrature (cf. Section 2.2), typically232

Q � M , and the use of the full/sparse Gaunt coefficients speeds up computations considerably.233

In particular, evaluating the flux matrix 〈ΩmE(u)〉 exactly for E(u) ∈ span{m1, . . . ,mM} requires234

Q = 2(N + 1)2 ≈ 2M �
√
M̂ . Since E(u) /∈ span{m1, . . . ,mM} in general, it is typical to have235

Q > 2(N + 1)2. As a rule of thumb, we also use an even value of ng (see quadrature section of236

Section 2.2) for symmetry concerns. We note that although the sparse Gaunt optimization always237

uses many fewer flops to compute the Hessian, the sparsity requires indexing into memory in a238

nonconsecutive way. Therefore, computational speedup is not always as large as the flop ratio.239

7If m`1 has degree d1 and m`2 has degree d2, then the index `3 in the sum need only go from 1 to (d1 +d2 +1)2. To
have one compact notation, we set M̂ to the maximum possible value which occurs for degree N spherical harmonics.
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No Gaunt Full Gaunt Sparse Gaunt

Order O(QM2) O(M̂M2) O(
√
M̂M2)

Sums QM +QM2 QM +QM̂ +M2M̂ QM +QM̂ +M2
√
M̂

Mult Q+QM + 2QM2 Q+QM +QM̂ +M2M̂ Q+QM +QM̂ +M2
√
M̂

Exp Q Q Q

Table 4: Floating point operation counts for the three methods of computing the Hessian H. “No
Gaunt” means H is computed by (16); “Full Gaunt” means H is computed by (18) without using
the sparsity of β; “Sparse Gaunt” means H is computed by (18) using the sparsity of β.

Gaunt coefficients results. In Table 5, results are shown for the various Gaunt coefficients240

optimizations with both the CPU and GPU implementations. The timing results are for 20 time241

steps with the smooth initial condition on a 203 domain with a batch size of 300 for the GPU242

implementation. (Batching on the GPU is described in Section 3.3.) The times given only include243

time elapsed inside the min function. For a smaller number of moments, there is not much difference244

in computation time between the full and sparse Gaunt optimization. However, as the number of245

moments increases, the benefit of the sparse Gaunt optimization increases. This is true for both246

the CPU and GPU implementations. The GPU version always outperforms the CPU, particularly247

with a larger number of quadrature points.248

No Gaunt Full Gaunt Sparse Gaunt
N ng CPU GPU CPU GPU CPU GPU

3 12 12.4s 8.6s 8.7s 7.3s 8.1s 7.1s
3 20 29.9s 12.2s 22.7s 7.9s 20.9s 7.8s
9 20 576.5s 294.0s 491.3s 138.8s 98.2s 71.5s
9 28 1107.0s 510.1s 580.3s 146.2s 167.8s 79.2s

Table 5: CPU/GPU results for various Gaunt coefficients optimizations.

3.3 GPU acceleration via batch Hessian computations249

There are several possible strategies for accelerating the minimization algorithm (Algorithm 1)250

with the GPU. One approach is to implement Algorithm 1 completely on the GPU. However, the251

performance of the algorithm is degraded in this case because the minimization algorithm as a whole252

is not easily vectorized. A second approach is to call the GPU every time a Hessian evaluation is253

required, since this is the most expensive part of the calculation. Such an implementation, however,254

results in frequent data transfers to and from the GPU. Thus, except for the case of large numbers255

of moments, there is not enough work for the GPU per function call to achieve good performance.256

An approach that yields good performance gains for both small and large moment orders is to257

batch solve several Hessian calculations, associated to different moments uijk of the mesh, at once258

on the GPU.259

To implement the batching strategy, we separate each Newton iteration into the evaluation of260

the Hessian and the remainder of the iteration. We assemble a batch of independent minimization261

problems—possibly in different iterations of the algorithm—that all require a Hessian evaluation.262

The entire batch of Hessians is evaluated in parallel on the GPU and then moved to the CPU to263
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complete the rest of each iteration. This process is detailed in Algorithm 7 and depicted in Figure 2.264

265

Algorithm 7: Batch optimization solver

Parameters: batchsize
1 Put all the minimization problems into Queue 1 in initialized state
2 while Queue 1 and Queue 2 are not empty do
3 Compute min(batchsize, Queue 1 length) Hessians from Queue 1 on the GPU
4 Put the batch of minimization problems into Queue 2
5 foreach Minimization problem in Queue 2 do
6 Complete the Newton iteration on the CPU
7 if Minimization problem in Queue 2 meets tolerance then
8 Put the minimization problem into Queue 3
9 else

10 Put the minimization problem back into Queue 1
11 end

12 end

13 end

266

Queue 1 Queue 2

Queue 3

Solve for a 
batch of

Hessians on
GPU

Finish
Newton
iteration
on CPU

Finished minimization problems

H Solved

Minimization
not finished

Minimization
finished

Figure 2: Figure describing the batch minimization algorithm with GPU acceleration.

Batch Hessian results. The batch size for the Hessian computations must be chosen large267

enough to give the GPU enough work to do. In Table 6, timing results are given for different batch268

sizes. The times given only include time elapsed inside the min function. Results are given for269

the smooth initial condition with 403 spatial cells and 20 time steps while using the sparse Gaunt270

optimization. In general, the compute time is a decreasing function of batch size.271
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N ng CPU GPU-25 GPU-50 GPU-100 GPU-200 GPU-400 GPU-800 GPU-1600

3 12 112.8s 122.1s 93.6s 79.4s 73.9s 69.9s 67.1s 65.7s
3 20 238.0s 167.4s 118.0s 95.2s 82.3s 75.9s 72.1s 70.2s
9 20 927.6s 999.3s 848.6s 755.1s 724.5s 714.7s 710.3s 708.3s
9 28 1620.7s 1190.7s 941.3s 846.4s 797.4s 782.6s 778.5s 774.7s

Table 6: Results using different batch sizes for calculating the Hessian on the GPU. GPU-B repre-
sents the time elapsed using the GPU with a batch size of B.

4 Statistics and scaling272

In this section, we present overall program results including (i) convergence results confirming273

second-order space-time accuracy; (ii) composite acceleration results from the combined improve-274

ments in Section 3; (iii) statistics on the number of iterations needed to solve the minimization275

problems; (iv) extensive timing data for a large scale M3 computation; and (v) weak scaling results276

for P3 and M3. All computations were performed on the supercomputer Titan.277

Convergence. The convergence rate was tested using the smooth initial condition (14). The278

reference solution was computed using a spatial resolution of n = 320, and the time step used for279

all calculations was ∆t = 0.9
6 ∆x = 0.15∆x (see (13) and note ∆x = ∆y = ∆z).280

Table 7 shows L2 spatial convergence data at time t = 0.3. The table shows convergence data for281

moments of degree d = 0, 1, 2, 3. Since there are actually 2d+ 1 moments of degree d, we evaluate282

ed =

(
d∑

r=−d
||urd,320 − urd,n||22

)1/2

, (19)

where urd,n is the degree d, order r moment of the numerical solution, computed on the spatial mesh283

of size n. The results in Table 7 confirm second-order temporal and spatial convergence.284

n e0 Conv Rate e1 Conv Rate e2 Conv Rate e3 Conv Rate

10 1.22e-4 – 4.28e-4 – 5.46e-4 – 4.70e-4 –
20 3.79e-5 1.69 1.10e-4 1.97 1.29e-4 2.08 9.23e-5 2.35
40 1.38e-5 1.45 2.39e-5 2.20 2.86e-5 2.17 2.53e-5 1.87
80 4.35e-6 1.67 5.43e-6 2.14 5.64e-6 2.34 5.89e-6 2.10
160 7.88e-7 2.47 9.38e-7 2.53 1.04e-6 2.44 1.22e-6 2.27

Table 7: Convergence data for M3 and smooth initial condition (14).

Algorithm acceleration. We next explore the combined improvement of the optimizations dis-285

cussed in Section 3. We use both the smooth (14) and Gaussian (15) initial conditions with a 203
286

spatial mesh and a batch size of 300 for the Hessian calculations. The results are given in Table 8.287

The overall speedups for both initial conditions increase from 1.8x to 13x, depending on the number288

of moments and the number of quadrature points. As these increase, the optimizations become289

more effective.290
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IC N ng Before After Speedup

Smooth 3 12 15.417s 8.369s 1.84x
Smooth 3 20 38.685s 11.272s 3.43x
Smooth 9 20 598.694s 86.116s 6.95x
Smooth 9 28 1265.605s 97.635s 12.96x

Gaussian 3 12 9.146s 4.932s 1.85x
Gaussian 3 20 23.199s 7.631s 3.04x
Gaussian 9 20 354.984s 40.697s 8.72x
Gaussian 9 28 692.014s 50.728s 13.64x

Table 8: Overall improvement in time to solution for MN simulations with smooth (14) and Gaus-
sian (15) initial conditions.

The first row in Table 8 can be predicted given previous data in the paper. In Table 1, for M3291

with ng = 12, the function min takes approximately 80% of the calculation time and flux mn takes292

approximately 20% of the time. From Table 3, we expect a speedup of 3x for flux mn, and from293

Table 5, we expect a speedup of 12.4/7.1 = 1.75x for min. Therefore, the estimated total speedup294

is 100
80/1.75+20/3 or 1.91x, which is quite close to the 1.84x speedup actually observed. The speedup295

results in other rows could theoretically be determined in the same manner, but an initial profile296

was not created for those cases.297

Minimization iterations. The function min is the only function that may vary significantly in298

time to completion between different spatial cells. This happens because the number of Newton299

iterations needed for the algorithm to converge changes from cell to cell. To see this disparity,300

we plot in Figure 3 the number of iterations taken by min to converge for each spatial cell on the301

x-axis. A spatial mesh with 1003 cells is used. For the smooth initial condition (14), 25 time steps302

were taken, and for the Gaussian initial condition (15), 167 time steps were taken. For the smooth303

initial condition, the first time step requires more iterations than any other time step because of304

the anisotropy of the initial condition. After this, the algorithm uses the previous data in the min305

function and only 1 or 2 minimization iterations are required for convergence. For the Gaussian306

initial condition, the problem is always difficult to solve on the expanding wave front, requiring in307

some cases more than 20 iterations for convergence of the minimization algorithm. (Note: there308

are twice as many Euler steps shown in Figure 3 as there are time steps since the Heun method309

takes two Euler steps.)310
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Figure 3: Plot of minimization iterations required for convergence for spatial cells on the x-axis
for each Euler step. Left: smooth initial condition (14). Notice the first Euler step requires
5 minimization iterations to converge. Right: Gaussian initial condition (15). Notice the large
number of minimization iterations taken on the expanding wave front.

M3 statistics at scale. The variation in time taken by the min function for different spatial311

cells can cause load balancing problems for the MN method that do not occur for the PN method.312

To quantify this effect, we present timing data using the smooth initial condition (14) and a large313

parallel calculation: 263 nodes with 1003 spatial cells per node. We present the elapsed time (time)314

for each of the four functions (comm, min, flux mn, and euler) at each compute node (node) and315

each time step (step). The data has the form:316

time = function(node, step). (20)

When the stage of the time integrator from Algorithm 2 is important, these functions are separated317

into pairs: comm1/comm2, min1/min2, flux1/flux2, and euler1/euler2.318

In Table 9, we aggregate the timing data, first summing the elapsed time for each function319

across time steps and then taking the mean and standard deviation of these elapsed times across320

nodes. We also present a normalized standard deviation calculated as standard deviation divided321

by mean.322

Of particular importance is that the time for comm is not just the raw communication time;323

rather, it also includes the time spent waiting for data to be received. This is why the time for324

comm for M3 is so much larger than for P3. The standard deviation in time to compute a solution325

for M3 is larger than for P3, which causes more waiting time for receipt of data in certain nodes.326

A more detailed view of the timing data for M3 with n = 100 is given in Figure 4, which shows the327

mean node timing of each function vs time step.328
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n Mean Std NStd

P3 25 0.66s 0.22s 0.328
P3 50 2.82s 0.83s 0.294
P3 100 15.50s 7.29s 0.470

M3 25 2.60s 1.83s 0.704
M3 50 13.10s 12.00s 0.916
M3 100 100.87s 88.49s 0.877

(a) comm timings

n Mean Std NStd

P3 25 – – –
P3 50 – – –
P3 100 – – –

M3 25 36.07s 1.81s 0.050
M3 50 228.43s 12.12s 0.053
M3 100 1643.43s 89.54s 0.054

(b) min timings

n Mean Std NStd

P3 25 0.97s 0.15s 0.156
P3 50 6.78s 0.87s 0.128
P3 100 52.97s 7.37s 0.139

M3 25 7.97s 0.11s 0.014
M3 50 30.74s 0.31s 0.010
M3 100 175.03s 0.58s 0.003

(c) flux timings

n Mean Std NStd

P3 25 0.02s 0.001s 0.066
P3 50 0.20s 0.007s 0.036
P3 100 2.45s 0.017s 0.007

M3 25 0.07s 0.006s 0.093
M3 50 0.46s 0.038s 0.084
M3 100 3.84s 0.300s 0.078

(d) euler timings

Table 9: P3/M3 timings on 263 nodes. (Std: standard deviation; NStd: normalized standard
deviation.)
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Figure 4: Mean node time is shown. Blue circles represent the first Euler step and green triangles
represent the second Euler step.

The most striking feature of the data is that comm1 takes longer than comm2, while min2 takes329
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longer than min1. We conjecture that there is a cause and effect relationship here in which the330

second min function takes longer to compute and more importantly has a higher standard deviation.331

This higher standard deviation then causes blocking of the communication to the first comm function.332

From Figure 3, we can see why min2 takes longer to compute than min1. The second Euler step333

requires on average 2 iterations to converge whereas the first Euler step requires on average only 1334

iteration to converge. This may occur because the initial guess used for the minimization algorithm335

at the beginning of a Heun step uses the result of the previous Euler step (s = 1 from Algorithm 2),336

which is an approximation of the solution at the current time step.337

Weak scaling results. The overall goal of [2, 3] and the work presented here is to make MN338

more competitive with PN in time to solution, specifically at scale. Therefore, we performed weak339

scaling tests for P3 and M3 on Titan using the smooth initial condition (14). We ran the scaling340

tests for 103, 253, 503, and 1003 spatial cells per node from 1 node to 263 = 17576 nodes. GPU341

acceleration was used to speed up the M3 calculations for both the flux mn and min functions. A342

batch size of 300 was used for the Hessian computations, and sparse Gaunt coefficients were used.343

Figure 5 shows the weak scaling results, and Table 10 gives the difference in time to solution for a344

single node and for the largest scale computations. Table 11 compares the flop rates on one node345

for P3 and M3 flux computations.8346
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Figure 5: Weak scaling results (lines bottom to top in spatial cells per node: 103, 253, 503, 1003)
for (left) P3, (right) M3.

1 node 17576 nodes
Size P3 M3 M3/P3 P3 M3 M3/P3

103 0.11s 7.21s 64.4x 0.45s 8.32s 18.5x
253 1.12s 44.68s 40.0x 1.85s 46.94s 25.4x
503 7.55s 263.45s 34.9x 10.44s 273.57s 26.2x
1003 60.31s 1831.37s 30.4x 74.47s 1928.03s 25.9x

Table 10: Table comparing time to solution for 1 node and 17576 nodes. Size is the number of
spatial cells per node.

8Flop rates are similar per node up to 263 nodes.
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n P3 Flop Rate M3 Flop Rate

10 6.32 GFLOPS 2.00 GFLOPS
25 6.31 GFLOPS 9.57 GFLOPS
50 7.46 GFLOPS 21.83 GFLOPS

100 7.48 GFLOPS 32.44 GFLOPS

Table 11: The flux pn and flux mn flop rates for one node. Note the flop rates never reach peak
performance because the computations are memory bandwidth limited.

We observe that the P3 solution time does increase with the number of nodes, but only for a very347

small problem size (103 cells per node) does the simulation become communication dominated. In348

this case, the M3 calculation becomes more competitive at scale, but the P3 simulation is still about349

25 times faster. Thus for the same time to solution, the P3 simulation with the current numerical350

method can afford a spatial resolution that is 2–3 times finer than the corresponding M3 simulation351

at the largest scale. Depending on the problem at hand, MN may be a better closure at any scale352

if Gibbs phenomena in the angular approximation strongly pollutes the PN solution and, at the353

same, less spatial resolution can be tolerated. We also note the disparity in the flop rates between354

the M3 and P3 implementations due to the use of CUDA for M3 and OpenMP for P3. Clearly,355

there is room for improvement in the implementation of the PN method if GPU acceleration is356

used to accelerate the flux pn function.357

5 Conclusions and discussion358

Several optimizations were shown to accelerate the implementation of the entropy-based model359

MN . The use of Gaunt coefficients, in conjunction with GPU acceleration strategies, reduces the360

time to solution for a given test problem between 1.8x and 13x. We also computed performance361

statistics for MN , and it was shown that MN can cause some load balancing issues at scale. Finally,362

we compared weak scaling results of the PN and MN algorithms. For our test problems, the ratio363

of MN to PN in time to solution is reduced from 64x on 1 node to 18x on 17576 nodes for the364

smallest problem per node and from 30x on 1 node to 26x on 17576 nodes for the largest problem365

size per node.366

We conjecture that the weak scaling results presented here provide a reasonable lower bound367

of what can be expected for the relative efficiency of the MN calculation. One reason for this is368

the simplicity of the model. Indeed, most increases in model complexity, such as a more realistic369

collision operator, will require a similar increase in floating-point operations and memory resources370

for both PN and MN models, thereby decreasing the ratio in time to solution of MN relative to PN .371

A second reason is the simplicity of the explicit time integrator. Indeed, for many applications,372

an implicit time integration scheme is desired to allow for large time steps. Such schemes involve373

global communication of data between all nodes, as opposed to the communication of halo data374

between adjacent nodes that is characteristic of explicit schemes. An implicit time integration375

scheme would require a linear global solve for the PN equations, but a global nonlinear solve for376

the MN equations. Thus the communication costs for MN are likely to be higher. However, as both377

methods become increasingly communication-bound, the ratio of time to solution between them378

will continue to decrease. In addition, the use of iterative solvers means that one could, in many379

cases, solve the MN optimization problem rather coarsely in earlier iterations.380

In a larger context, the scaling results in Figure 5 and Table 10 give some insight into algorithm381

development for emerging architectures at extreme scales. It is generally expected [37] that these382
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new systems will be increasingly limited—both in terms of speed and cost—by memory storage383

and data transfer. The Titan supercomputer is just the very beginning of this evolution. New384

systems will lend themselves to algorithms that are arithmetically intensive, i.e., where the number385

of floating point operations per unit of memory is large. Thus, in order to gain accuracy in a386

simulation, it is natural to ask whether, at some point, it is more efficient to move from a simple,387

linear model to a complicated, highly nonlinear model (where more floating point operations are388

required) instead of simply increasing the number of unknowns (where more memory is required).389

The choice between PN and MN exemplifies this choice, and the scaling results tell us two things.390

First, the data transfer capabilities of Titan are still good enough to give PN a distinct advantage391

in time to solution, even for full-scale simulations. Second, however, one can clearly observe the392

slowdown caused by memory movement at the very highest scales, particularly when the memory393

per node is very low. While this amount of memory per node is unreasonably low, it is important394

to note that the ratio of memory size to number of floating point units will continue to decrease as395

the system size increases.396

One important comparison between MN and PN that has not been done here is an analysis of397

efficiency that compares the efficiency of the two methods, both in terms of time and energy, for398

realistic physics problems. For a given problem, one should determine for each method what value399

of N is needed to attain a prescribed level of accuracy. Based on the two values of N , one should400

calculate in each case the time to solution and the energy costs and then make comparisons. Such401

a project is currently work in progress.402

A Real spherical harmonics403

We used the real spherical harmonics as an orthonormal basis for L2(S2). For d ≥ 0 and −d ≤ r ≤ d,404

the degree d and order r normalized, real spherical harmonic is given by405

Rrd(θ, φ) =


√

2N−rd P−rd (cos θ) sin(rφ), r < 0
N0
dPd(cos θ), r = 0√
2N r

dP
r
d (cos θ) cos(rφ), r > 0

(21)

where406

N r
d =

√
(2d+ 1)

4π

(d− r)!
(d+ r)!

; (22)

407

P rd (µ) = (−1)r(1− µ2)r/2
dr

dµr
Pd(µ), r > 0; (23)

and Pd is the degree d Legendre polynomial, normalized so that
∫ 1
−1 Pd(µ)dµ = 2

2d+1 . The spherical408

harmonics are packed into m as409

m = (R0
0, R

−1
1 , R0

1, R
1
1, . . . , R

−N
N , . . . , RNN ). (24)

B Solving for the real Gaunt coefficients410

To solve for the real Gaunt coefficients β`1`2`3 , notice that (17) must be true for all points and in411

particular the quadrature points on the sphere described in Section 2.2. Therefore, for q = 1 . . . Q,412

m`1qm`2q =

M̂∑
`3=1

β`1`2`3m̂`3q. (25)
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Taking `1 and `2 to be constant in the above equation, this is just an overdetermined linear system413

(assuming Q > M̂). Denote the left hand side vector of (25) as v(`1`2) (has length Q), the matrix414

given by m̂`3q as A (has size Q × M̂), and the vector given by β`1`2`3 as b(`1`2) (has length M̂).415

Still with `1, `2 constant, this yields the linear system:416

v(`1`2) = Ab(`1`2). (26)

We solve the system as a least squares problem417

min
b(`1`2)∈RM̂

||v(`1`2) −Ab(`1`2)||2 (27)

using the method of computing a QR decomposition. Let A = UR, where U is an orthogonal418

matrix and R is an upper triangular matrix. Then419

||v(`1`2) −Ab(`1`2)||2 = ||v(`1`2) − URb(`1`2)||2 = ||UTv(`1`2) −Rb(`1`2)||2, (28)

where minimizing over the last expression is trivial. Since A does not involve `1 or `2, only one420

QR decomposition is needed to solve the system over and over again for the different `1, `2. Also421

remember, the real Gaunt coefficients only need to be computed once at the beginning of the422

program.423

C Sparsity result for the real Gaunt coefficients424

For the real spherical harmonics,425

m`1m`2 =
M̂∑
`3=1

β`1`2`3m̂`3 , (29)

where M̂ = (2N + 1)2, m contains spherical harmonics of degree less than or equal to N , and m̂426

contains spherical harmonics of degree less than or equal to 2N .427

Proposition 1. For fixed `1, `2, the sum in (29) has no more than 2N + 1 nonzero elements in it.428

Proof. The real spherical harmonics of degree d can be given in terms of the complex spherical429

harmonics via the unitary transformation [22]430 

Rdd
...
R1
d

R0
d

R−1
d
...

R−dd


=

1√
2



1 1
. . . . .

.

1 1√
2

i −i

. .
. . . .

i −i





Y d
d
...
Y 1
d

Y 0
d

Y −1
d
...

Y −dd


, (30)

where the complex spherical harmonics are defined as431

Y r
d (θ, φ) = N

|r|
d P

|r|
d (cos θ)eirφ, (31)
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with N r
d and P rd defined in Appendix A. The transformation (30) and its inverse can be written as

Rrd = arY
r
d + brY

−r
d (32)

Y r
d = ārR

r
d + b̄−rR

−r
d (33)

where432

ar =
1√
2


1, r > 0√

2
2 , r = 0
−i, r < 0

and br =
1√
2


1, r > 0√

2
2 , r = 0
i, r < 0

(34)

and ā denotes the complex conjugate of a.433

Now, multiplying two real spherical harmonics and expanding yields

Rr1d1R
r2
d2

=(ar1Y
r1
d1

+ br1Y
−r1
d1

)(ar2Y
r2
d2

+ br2Y
−r2
d2

)

=ar1ar2Y
r1
d1
Y r2
d2

+ ar1br2Y
r1
d1
Y −r2d2

+ br1ar2Y
−r1
d1

Y r2
d2

+ br1br2Y
−r1
d1

Y −r2d2
. (35)

Each product of two complex spherical harmonics can be written as the following linear combination434

of complex spherical harmonics using (complex) Gaunt coefficients [41]435

Y r1
d1
Y r2
d2

=

d1+d2∑
d=0

2|(d+d1+d2)

Gr1,r2d,d1,d2
Y r1+r2
d . (36)

In the sum (36), we use the notation 2|(d+d1 +d2) to represent d+d1 +d2 ≡ 0 (mod 2). Notice how
we only have to sum over very few complex spherical harmonics. Now, putting together equations
(35) and (36) yields

Rr1d1R
r2
d2

=

d1+d2∑
d=0

2|(d+d1+d2)

(
ar1ar2G

r1,r2
d,d1,d2

Y r1+r2
d

+ ar1br2G
r1,−r2
d,d1,d2

Y r1−r2
d

+ br1ar2G
−r1,r2
d,d1,d2

Y −r1+r2
d

+ br1br2G
−r1,−r2
d,d1,d2

Y −r1−r2d

)
. (37)

Label the four parts of the summand from (37) as (I), (II), (III), and (IV). Then expanding the436

right side of equation (37) back into real spherical harmonics using (33) and using the fact437

Gr1,r2d,d1,d2
= G−r1,−r2d,d1,d2

(38)

yields438

(I) : Gr1,r2d,d1,d2
(ar1ar2 ār1+r2 + br1br2 b̄r1+r2)Rr1+r2

d

(II) : Gr1,−r2d,d1,d2
(ar1br2 ār1−r2 + br1ar2 b̄r1−r2)Rr1−r2d

(III) : G−r1,r2d,d1,d2
(br1ar2 ā−r1+r2 + ar1br2 b̄−r1+r2)R−r1+r2

d

(IV ) : G−r1,−r2d,d1,d2
(br1br2 ā−r1−r2 + ar1ar2 b̄−r1−r2)R−r1−r2d .

(39)

The coefficients of R in (I), (II), (III), and (IV) yield the real Gaunt coefficients except when439

r1 + r2 = 0 or r1 − r2 = 0. In these cases, either (I)+(IV) or (II)+(III) yields the real Gaunt440

coefficient.441

22



Comparing the expressions ar1ar2 ār1+r2 and br1br2 ā−r1−r2 from (I) and (IV) respectively, if442

r1 + r2 6= 0, then exactly one of these expressions is real and the other one is purely imaginary443

and nonzero. The same is true for br1br2 b̄r1+r2 and ar1ar2 b̄−r1−r2 . Since the coefficients of Rr1+r2
d444

and R−r1−r2d must be real, only one of (I) and (IV) is nonzero. In the case r1 + r2 = 0, Rr1+r2
d =445

R−r1−r2d = R0
d and the coefficients are added to form the real Gaunt coefficient. This same parity446

occurs for (II) and (III). Hence, (I), (II), (III), and (IV) represent at most two nonzero real Gaunt447

coefficients.448

The maximum possible number of nonzero real Gaunt coefficients occurs when d1 = d2 = N ,449

which gives the permissible ` values in sum (37) of450

d = 0, 2, . . . , 2N. (40)

For d = 0, the only possible value of m is zero yielding at most 1 real Gaunt coefficient. For451

d = 2, 4, . . . , 2N , there are two possible nonzero real Gaunt coefficients, which yields a total of452

2N + 1 possible real Gaunt coefficients. This possibility is achieved by the product R1
NR

1
N .453

D Variables454

n - Number of spatial cells in a Cartesian direction (n3 total cells).
N - Maximal degree of moments.
M - Number of moments (M = (N + 1)2).

M̂ - Number of moments needed in the computation of Gaunt coefficients (M̂ = (2N + 1)2).
Q - Number of quadrature points in angle.
ng - Number of Gauss-Legendre quadrature points on Ω3-axis (Q = 2n2

g).

m - Vector of real spherical harmonics up to and including degree N .
m̂ - Vector of real spherical harmonics up to and including degree 2N .
i, j, k - Indices for spatial coordinates.
q - Index for quadrature in angle.
` - Index for entry in a vector.
d, r - Degree and order indices respectively for spherical harmonics.

455
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